Selections and Finite C - Spaces
نویسنده
چکیده
Characterizations of paracompact finite C-spaces via continuous selections avoiding Zσ-sets are given. We apply these results to obtain some properties of finite C-spaces. Factorization theorems and a completion theorem for finite C-spaces are also proved.
منابع مشابه
Hereditary Invertible Linear Surjections and Splitting Problems for Selections
Let A + B be the pointwise (Minkowski) sum of two convex subsets A and B of a Banach space. Is it true that every continuous mapping h : X → A + B splits into a sum h = f + g of continuous mappings f : X → A and g : X → B? We study this question within a wider framework of splitting techniques of continuous selections. Existence of splittings is guaranteed by hereditary invertibility of linear ...
متن کاملGeneralized multivalued $F$-contractions on non-complete metric spaces
In this paper, we explain a new generalized contractive condition for multivalued mappings and prove a fixed point theorem in metric spaces (not necessary complete) which extends some well-known results in the literature. Finally, as an application, we prove that a multivalued function satisfying a general linear functional inclusion admits a unique selection fulfilling the corresp...
متن کاملOn exponentiable soft topological spaces
An object $X$ of a category $mathbf{C}$ with finite limits is called exponentiable if the functor $-times X:mathbf{C}rightarrow mathbf{C}$ has a right adjoint. There are many characterizations of the exponentiable spaces in the category $mathbf{Top}$ of topological spaces. Here, we study the exponentiable objects in the category $mathbf{STop}$ of soft topological spaces which is a generalizati...
متن کاملRepresentations of Affine Multifunctions by Affine Selections
The paper deals with affine selections of affine (both convex and concave) multifunctions acting between finite-dimensional real normed spaces. It is proved that each affine multifunction with compact values possesses an exhaustive family of affine selections and, consequently, can be represented by its affine selections. Moreover, a convex multifunction with compact values possesses an exhaust...
متن کاملFiber bundles and Lie algebras of top spaces
In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.
متن کامل